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In the absence of countermeasures, a system’s security and survivability will degrade over time. Ensuring
that you can effectively evolve the capabilities of a system in response to a changing risk environment is an
essential aspect of systems design. Successful evolutionary design is dependent on the continual monitoring
of the system and its environment to detect changes that can affect the risk management assumptions on
which the system’s security and survivability are founded.
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Introduction
A fundamental truth of system design is that, in the absence of countermeasures, a system’s security and
survivability will degrade over time. This degradation occurs not because any bits “rust out” or because
the system shows any other manifestations of physical aging. Rather, changes in the environment or usage
of a system, or changes to the elements that compose the system, often introduce new or elevated threats
that the system was not designed to handle and is ill-prepared to defend itself against. Since security and
survivability are system-wide properties, successfully dealing with such changes often requires revisiting
every phase of the system development life cycle (SDLC) to at least some degree and poses particularly
critical challenges for the assembly and integration phase.

The system you have assembled and integrated from vendor and custom components must evolve in
response to a myriad of environmental changes, but the first step in evolving to meet new threats to your
system’s security is to recognize the need to modify your system—that is, to recognize changes in security
and survivability risks that trigger the need to enter the evolution phase of the SDLC. The example in the
next section (although not about a security failure) illustrates the critical importance of recognizing the need
for evolutionary design changes.

Assumptions Evolve, and So Must Software
What has become a classic example of the catastrophic consequences that can result from a simple software

error10 was the explosion of the unmanned Ariane 5 rocket during the first minute of its maiden flight on the

morning of June 4, 1996 [ESA-CNES 9611]. The explosion destroyed the launch vehicle’s payload (a set of
scientific satellites) worth on the order of $500 million.

3. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/15-BSI.html (Lipson, Howard F.)
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10. A simple arithmetic overflow doomed the Ariane 5, but taken in its operational and software engineering context, the

circumstances surrounding the error were complex.
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The Ariane 5’s flight control software reused design specifications and code from its highly successful
predecessor, the Ariane 4 launch vehicle. In particular, one of the on-board modules, the Inertial Reference
System, performed a data conversion of a 64-bit floating point value related to the horizontal velocity of the
rocket and attempted to place the result into a 16-bit signed integer variable. This computation had never
caused a problem with the Ariane 4, but the more aggressive flight path and much faster acceleration of the
Ariane 5 produced a higher horizontal velocity and a corresponding data value that was too large for the
16-bit signed integer variable, causing an arithmetic overflow. A redundant backup process used the same
software and failed in the same manner. The Inertial Reference System then generated some diagnostic
output that was incorrectly interpreted as flight control data by other portions of the flight control system.
Based on this faulty interpretation, the flight control system took actions that led to the self-destruction of the
rocket.

Although arithmetic overflow is a very well-known and highly preventable error, the Arian 4 design team
did not add the exception-handling code necessary to check for arithmetic overflow and take appropriate
remedial action. Based on the operating characteristics of the Ariane 4, the design team felt it was physically
impossible to have a horizontal velocity large enough to cause an arithmetic overflow of a 16-bit signed
integer variable. However, the reuse of this software in the Ariane 5 placed the code in a very different
operating context in which the specific design assumption relating to horizontal velocity was no longer valid.
Although the operating characteristics of the rocket had evolved, the underlying design assumptions based on
those characteristics were not revisited by the design or testing teams, and so the software did not evolve to
reflect its new operating environment. The assumptions on which the design was based no longer reflected
reality.

In all there were 14 recommendations by the Flight 501 Failure Inquiry Board [ESA-CNES 9612]. Two of
these had especially strong implications for software evolution, software architecture, code reuse, and the
design of commercial off-the-shelf (COTS) based systems: recommendation 5 (first two bullet items), and
recommendation 12:

R5 Review all flight software (including embedded software), and in particular:

• Identify all implicit assumptions made by the code and its justification documents on the values
of quantities provided by the equipment. Check these assumptions against the restrictions on use
of the equipment.

• Verify the range of values taken by any internal or communication variables in the software.

• ...

R12 Give the justification documents the same attention as code. Improve the technique for keeping
code and its justifications consistent.

Assumption Mismatches and the Impact of Change
Mismatches in the basic assumptions (and in particular the risk-management assumptions) on which the
design of a system is based have historically been a fundamental cause of countless security, safety, and
survivability problems. Architectural mismatches among components are a nearly universal source of

problems [Garlan 9514] and are a direct result of mismatched assumptions. The security and survivability of
COTS-based systems (and other forms of software reuse) suffer from mismatches between the assumptions

made by the COTS software designers and the assumptions made by the system integrators [Lipson 0215].
Invalid assumptions made by designers about the real-world operating environment are another cause of
system failures. However, even if all such assumptions were correct and were perfectly matched during the
initial design, implementation, and initial deployment, the facts or circumstances on which some of these
assumptions are based will invariably change over time. Any security (or other) problem arising from these
changes can be considered to be a case of evolution failure—the failure of a system’s designers to evolve the
system in a manner that properly reflects the impact of changes (e.g., in technology, operating environment,

12. #dsy467-BSI_esa
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and business mission) on its underlying assumptions.16  Whether creating new systems and components or
reusing existing ones, designing a system for evolution is a key aspect of building security in (or building

quality in) from the outset.17 

Recognizing the Need for Evolutionary Design Activity 18 
The strongest implication of the concept of evolutionary design is that the sustainment of any mission-critical
system requires perpetual design. That is, at least to some extent, all SDLC activities must be perpetual
if the quality attributes of a system are to be sustained over time. In addition to evolving a system and its
components, it is also crucial for assurance cases (i.e., assurance arguments composed of artifacts and other
evidence of assurance of desired system properties) to evolve as well. System characteristics that hinder or

promote evolution are discussed in Topics in Interoperability: System-of-Systems Evolution [Carney 0519].
Some fundamental “laws” of software evolution are described in “Rules and Tools for Software Evolution

Planning and Management” [Lehman 0120].

It is essential that significant risk management resources should be devoted to the ongoing evolution of any

mission-critical system. The successful evolutionary design of a secure and survivable system21 is dependent
on the continual monitoring of the system and its environment to detect changes that may affect the risk
management assumptions on which the security and survivability of the system are founded.

Any significant change in system requirements can certainly affect the underlying risk management
assumptions, but the effects of other changes might not be as obvious. Therefore, one of the most essential
uses for risk management resources would be to support security and survivability monitoring to provide
early warnings of emerging threats and increased risks to the system. The amount of resources to be devoted
to this activity, and to those that conduct it, will depend on executive management’s risk tolerance and their
perception of the cost/benefit ratio for this effort.

Change Factors
We use the term risk assessment triggers to refer to the elements of a system or its environment that should
be monitored, looking for changes that can affect the risk management assumptions that underlie a system’s
security and survivability properties. Ideally, a best practice for system design would require that all such
assumptions be explicitly specified in a design rationale document or in other system artifacts, but typically
many such assumptions are merely implicit. Nevertheless, if during the lifetime of a system any of the
assumptions on which its design was based no longer hold, the mission-critical properties of the system (in
particular its security properties) must be reevaluated. It is therefore critical for management and the system
design team to be made aware of any event or change that appears (or has the potential) to undermine one or
more of those risk management assumptions. However, it is up to management and the system design team
to determine whether a particular change or set of changes should trigger an evolutionary design activity and
to decide on the extent of that activity.

Table 1 contains a representative set of risk assessment change factors (trigger elements) that might be
tracked by an organization. Trigger events include changes in attack techniques, mission, management, staff,
customers, and in the technological and legal environments. They also include changes to the elements that

16. Hence, assumption mismatches occur not only across architectures, components, and systems, they also occur over time.
17. Although this example is specifically about reuse, the lessons learned apply to the evolution of an aging component or system as

well.
18. This is a revised and updated version of one of the sections contributed by Howard Lipson for “Managing Software

Development for Survivable Systems” [Mead 01].
19. #dsy467-BSI_carney
20. #dsy467-BSI_lehman01
21. A survivable system is one that continues to fulfill its mission despite an attack, accident, or subsystem failure. Survivability

blends security and business risk management [Lipson 99] and is based on ensuring that the quality attributes that are critical
to the success of an organizational mission, such as availability and reliability, are sustained. The overall level of service
may gracefully degrade under stress, but a survivable system continues to provide the essential services that support the
organizational mission.
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compose your system and changes to other systems with which your system is involved in a system-of-
systems relationship.

Table 1. Factors that influence evolutionary design of secure systems

Change Factors (Triggers) Examples of Trigger Events

Business and Organizational

Mission, essential services, essential quality attributes, key
information resources and assets

The organization’s mission has changed or the system will be purchased and deployed
by other organizations with different missions.

Business strategies and tactics Changes in business strategies or tactics may require new types of data to be collected
and processed, as well as increased connectivity among elements of the system,
imposing new security requirements.

Management New executive managers may differ in their tolerance for risk and their risk
management strategies.

Organizational staff Turnover may result in a lowering of staff expertise, which reduces the organization’s
ability to handle the human processes associated with security, such as properly
configuring systems for optimal security. Moreover, in a rapidly growing organization,
new staff may be less trustworthy than previous staff (e.g., there may be less time for
background checks, or there may be more remotely stationed employees).

Workflow and processes Changes in organizational processes to which the system contributes may affect the
overall survivability of the mission. There may be new ways to attack the system or its
human-machine interface.

Customers New customers may be less known (and hence less trustworthy), may require more
extensive access to information resources and assets, or may require a higher quality of
service (e.g., higher availability) than previous customers.

Collaborators A new or existing collaborator may require a deeper level of integration with your
business processes than your system currently supports. Or your partner on one project
may become your competitor on another, requiring a more complex trust model.

Competitors Business competitors may offer new services to your customers that your system
currently cannot provide.

Usage, functionality, access, or quality of service User requests for a new means of access to a system (e.g., wireless networking), new
ways of using an existing system, the introduction of a service, or improvements in
the quality of an existing service have security and survivability implications that
need to be considered in any design activity undertaken in response to those requests.
For example, a manufacturing plant that will now be handling a new and particularly
volatile chemical ingredient requires an evolutionary redesign to improve the security
and safety of the plant’s control systems.

Threat Environment23

Attack techniques A new attack technique or variation has been discovered for which the system cannot
adapt automatically or through routine maintenance (e.g., simply by adding a new rule
for resistance, recognition, or recovery).

Malicious adversaries Awareness of industrial competitors engaging in espionage (or sabotage), growth in
criminal activity, or increases in nation-state-sponsored cyber terrorism may require
additional system resources to be devoted to security and survivability.

Operating Environment

Technology environment Changes in the technological environment in which the system operates (e.g., changes
in the systems environment, the availability of new security tools and techniques,
technological advances in the state of the practice for the application domain, and the
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increasingly widespread dissemination of detailed knowledge about the application
domain and its supporting technologies) can trigger the need for evolutionary
improvements in system security and survivability.

Physical environment The migration from wired desktops situated in a physically secure environment to
laptops and other wireless mobile devices that routinely traverse insecure and even
hostile environments increases the possibility of both physical and cyber theft. This
intensifies the need to strengthen the protection of enterprise-sensitive data resident
on those devices, as well as access to enterprise databases and services through those
devices.

Economic Environment and the Acquisition
Marketplace

Cost, profit, and affordability Changing cost factors may threaten or improve a system’s survivability because they
change the cost/benefit ratio associated with various survivability solutions (e.g.,
risk mitigation strategies). Affordability is a primary factor that is traded off against
security and survivability. For instance, new technology could provide a replacement
for an existing component at a much lower price. Greatly reduced component cost
could trigger an evolutionary redesign, using multiple instances of the new component
(possibly from multiple vendors) to provide increased redundancy and diversity, thereby
supporting greater survivability. As another example, increased stockholder demands
for short-term profits may tilt the security and survivability requirements toward
higher risk, which may be reflected in cutbacks in security administrators or vendor
maintenance contracts.

Vendors and contractors A new vendor for a system component may require remote maintenance and trusted
access.

COTS products You may have to replace a COTS component that is no longer supported with a
new component whose contribution to system security and survivability needs to be
evaluated.

Political, Social, Legal, and Regulatory Environment

Legal environment New laws, increased enforcement of existing laws, and lawsuits can change the risk
equation and threaten the mission. For instance, use of the system in a new and stricter
jurisdiction may increase the risk of liability, which might be mitigated by strengthening
certain aspects of the system’s security.

Government regulation Changes in government regulations that mandate increased privacy, security, safety,
competition, or quality of service may trigger the need to modify a system’s design to
ensure that these new requirements are specified and satisfied.

Certification requirements or standards Customers, regulators, and insurers may expect a system to be modified to the extent
necessary to comply with new (or changed) standards or certification requirements, so
as to reduce the actual or perceived level of risk associated with operating a system in
a particular domain or environment. For example, business interruption insurance rates
that include cyber attack may depend on a certification of the security and survivability
of a system (i.e., the presentation of sufficient evidence to demonstrate that the system
meets a given standard).

Political and social environment Changes in privacy concerns, trust relationships, or the risk tolerance of a society will
affect the security and survivability requirements that systems are expected to satisfy.

Relationships to Other Systems and Infrastructures

Dependencies and interdependencies New interconnections among the systems within an enterprise can create single points
of failure, such as multiple systems relying on a single service. Increased dependency
on a system may also be brought about by the elimination of manual processes, staff
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positions, or legacy systems, which means there is no longer an alternative if the system
fails. Increasing the interdependencies within an enterprise may mean that a failure is
more likely to have pervasive effects (e.g., cascading failures). Moreover, a mismatch
in security models among the interconnected systems can readily cause a violation of
security requirements.

Usage relationships Changes to systems that depend on your system (and of course changes to any system
that your system depends on) may require evolutionary changes to your system to
sustain the security and survivability of the overall system of systems.

System Feedback
(Lessons Learned)

System instrumentation and audits System logs allow the operations team to monitor and improve the security and
survivability of the system while it is in use (e.g., through configuration changes).
Further analyses of this data may be used to identify survivability issues and to
improve security and other system quality attributes in future releases of the system.
This analysis may also identify gaps in system instrumentation and the need for
improvements in the quality or coverage of system logs and in the frequency or quality
of audits.

Operational experience (attacks, accidents, and failures) Feedback from the field may lead to the discovery of new threats to a system’s security
and survivability or may reveal existing deficiencies.

Results of periodic security and survivability evaluations Troublesome results from regularly scheduled penetration testing or other security
and survivability evaluations can trigger awareness of the need for evolutionary
improvements.

Technical society meetings, security courses, seminars,
journals, news reports

Awareness of lessons learned by others’ system failures and compromises can trigger
improvements in your own system.

Evolutionary Design Activities
A change in one or more of the trigger elements can initiate any of a broad range of evolutionary design
activities described in Table 2, from no action at all, to performing one or more system development life
cycle activities, to abandonment of the system. The organizational unit responsible for monitoring for
changes in risk management assumptions would initiate the consideration of an evolutionary design activity,
but management and the system design team would be responsible for evaluating the impact of any trigger
event that was identified and for determining the scope of any subsequent design activity in response to that
event.

Table 2. Possible evolutionary design activities in response to a trigger event

Evolutionary Design Activity Example

1. No action needed or taken Conclude that greatly increased hiring activity
does not pose a new threat to the system’s mission
because all new hires are subject to thorough
background checks.

2. No action taken, but increase monitoring of this
trigger (or set of triggers)

Increase resources devoted to monitoring feedback
from the field in response to evidence from
operations indicating a performance slowdown
resulting from a rare combination of customer
actions.

3. Further analysis needed to determine next activity,
if any

Generate scenarios that reflect the discovery of a
new type of cyber attack. Use these scenarios as
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input for a security analysis, the results of which
may drive additional evolutionary design activities.

4. Perform a portion (delta) of one or some of the
system development life cycle activities

A small change to the system architecture increases
resistance to a new attack scenario.

5. Perform a portion (delta) of each of the full set of
life-cycle activities

A modification to the mission touches all life-cycle
activities to one extent or another.

6. Do a full redesign A major change in the technology of the application
domain, coupled with sweeping improvements in
defensive technology, cannot be incorporated by
evolutionary design activities alone.

7. Abandon the system A drastic change in the mission makes the system
obsolete or unnecessary.

For example, a computer security expert involved in risk assumption monitoring learns of a new attack
technique that might threaten the security and survivability of the existing system. Let’s assume that this
new attack technique cannot be countered by straightforward maintenance activities such as applying a
security patch to a system component or adding a new rule to a firewall. Based on the new attack technique,
the security expert generates a set of attack scenarios to be used as input for a security and survivability
analysis of the existing system. If deficiencies in the system’s resistance to this new attack (or in the system’s
ability to recognize or recover from the attack) are discovered, then one or more life cycle activities, such
as a modification of the system architecture or a change in security and survivability requirements, will be
necessary.

The completion of one life cycle activity may trigger the need for another. Adjustments in the design
tradeoffs with other system quality attributes may also be called for. For example, a specific architectural
change meant to improve security may have unanticipated adverse effects on some other system quality
attributes. These implicit tradeoffs can be systematically evaluated and explicitly adjusted using the results

of an architecture tradeoff analysis [Kazman 9826]. The point at which the evolutionary design process stops
is dependent on the risk tolerance of the organization, and the perceived cost/benefit ratio, with respect to
the particular set of trigger events. If evolution is not feasible, the organization may tolerate the risk or seek
other alternatives that transcend the system.

It is essential that the evolutionary design activities take place in the context of full access to a
comprehensive set of artifacts of the design process (such as descriptions of the rationale for tradeoffs made
during the last design cycle). Continuity of at least the core members of the design team is particularly
crucial for the evolutionary design of survivable systems so that the mission-specific design expertise can be
sustained throughout the life of the system. Otherwise, the evolutionary design process will likely degenerate
into patching, which can never support the long-term security of systems. Just as security must be designed
into a system from the beginning and not tacked on later as an afterthought, long-term security cannot be
sustained through patching or routine maintenance but only through the continual incorporation of new
security and survivability solutions through a principled evolutionary design process. The development and
promulgation of a suite of best practices to support this process would be a fundamental contribution to the
software engineering profession.

The Need for Best Practices in Evolutionary Design
While evolutionary design is a critical aspect of building security in, there are few best practices for
evolution that are supported by ample evidence and general consensus in the software engineering
community. Those practices that do exist are typically classified under software maintenance.

Moreover, many aspects of evolutionary design are not yet well understood by the software engineering
community. For example, it is not practical (i.e., not economically feasible) for a system to evolve along all

26. #dsy467-BSI_kazman
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of the possible dimensions outlined in Table 1. How to decide during the initial design of a system which
dimensions of change are most likely and how to make them amenable to low-cost redesign or automated
upgrades is an important topic for further research and investigation. Some limited success in this area has
been achieved through automatic upgrades of firewall rules and databases of attack signatures for detecting
and eliminating viruses and other malware—essentially rapidly evolving a system in response to evolving
security threats.

One of the most problematic aspects of the evolution of a secure and survivable system is how to recognize
changes in security and survivability risk that arise as a result of your system’s dependence on components,
services, and systems (in a system-of-systems environment) whose design, implementation, and operation
are not in your direct control. For example, changes in a vendor’s development processes, underlying
technology, personnel, ownership, or suppliers may increase security risks to your own system. Risks
introduced or increased by changes in the elements that your system is dependent upon can be addressed in a
variety of ways—often at the architectural level—but, of course, only if you are aware that external changes
may have affected your earlier risk management assumptions.

An emerging area of research and engineering known as assurance cases27 [Lipson 0828] has great
potential for helping system designers, integrators, architects, developers, acquisition personnel, and other
stakeholders deal with the changing risks associated with the evolution of components, services, and
systems. This would include a typical situation in which components are being integrated into a system by
an organization that is not in control of the components’ development or evolution. Assurance cases use
arguments that refer to bodies of evidence to demonstrate that specific claims about a system (or component)
are satisfied (e.g., with respect to a particular quality attribute). Assurance cases have been used successfully
in the safety domain (where they are known as safety cases) and efforts are underway in the research

community to extend the use of assurance cases to the security domain [Bloomfield 06a29, Bloomfield 06b30].

If the development of assurance cases for security were integrated into the system development life cycle
as a best practice, then assurance cases would evolve along with the component or system being developed,
and stakeholders could be notified of any change in an assurance case. One can envision an environment
in which assurance cases would be the key to tracking the evolution of a system, and the elements that
the system is dependent upon, with respect to the ongoing satisfaction of security claims. Assurance cases
could then be used as a means of recognizing those evolutionary changes that impact the system’s security
and survivability risks. Research is needed not only to create and refine methods and tools for developing
assurance cases for security but also to ensure that assurance cases can be developed in a cost-effective
manner in order to provide practical support for evolutionary design.

In summary, further research and reduction to practice is urgently needed on a broad range of evolutionary
design considerations for building secure and survivable systems, including evolutionary design principles
and candidate best practices solicited from the software engineering community. The goal is to begin to
formulate a set of demonstrably useful, highly actionable best security practices to support evolutionary
design. Ensuring that you can effectively evolve the security capabilities of a system in response to a
changing risk environment is an essential part of building security in—that is, building in the capability to
evolve and improve the security and survivability of a system over its full lifetime of use.
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